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Many particle simulations of the quantum electron gas using momentum-dependent potentials
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A simple quasiclassical model of the quantum electron gas based on a quasiclassical dynamics with an
effective momentum-dependent Hamiltonian is developed. The quantum mechanical effects corresponding to
the Pauli and the Heisenberg principles are modeled by constraints in the Hamiltonian. By using the concept
of minimum uncertainty wave packets, momentum-dependent effective potentials are derived. Monte Carlo
and molecular dynamics calculations are carried out for ensembles of 64—512 electrons and calculations of the
internal energy at several temperatures are given. A comparison with quantum Monte Carlo calculations of the
mean energy for low temperatures and with Pagproximations for several finite temperatures show that at
least in thermodynamic equilibrium our simple model yields reasonable rels8i863-651X97)13807-1

PACS numbgs): 52.65-y, 71.10.Ca, 03.65.Sq, 05.30.Fk

I. INTRODUCTION der[12] and several investigations devoted to the simulation
of two-component plasmd43-16,25,26

The electron gas on a positive background belongs to the Recently, quasiclassical simulations of many patrticle sys-
most interesting model objects in physics-4]. Electrons  tems have received a great deal of interest because of their
have strong interactions due to Coulombic forces and strongglative simplicity. As a first example we mention the semi-
guantum statistical effects due to the Fermi character. Sewlassical approach to molecular dynamics developed by
eral limiting cases were treated analytically. Important re-Hansenet al. [11].
sults on the ground state and the thermodynamical properties In this paper a quasiclassical approach to the quantum
at finite temperatures were obtained already in the analyticadlectron gas using momentum-dependent potentials is devel-
work of Wigner, Macke, Gell-Mann, and Brueckn&ee, oped. Our approach follows a line of thought developed in
e.g.,[1-3]). Let us consider now the characteristic lengththe last twenty years by a series of authors, such as, e.g.,
and dimensionless parameters of an electron plasma witHeller, Wilets, Kirschbaum, Dorso, and Randrup. In the class
densityn and temperatur@. of models developed by these authors the quantum effects

Characteristic length parametersthe average distance are approximated by certain constraints in the Hamiltonian
of the electrons is the Wigner-Seitz radids=[3/47n]"%,  [17,18,2Q.

the Bohr radius is defined @g=7%/me?. Other characteris- In an early paper Wilets, Henley, Kraft, and Mackellar
tic lengths are the Landau lengtke?/kT and the de Bro- [21] proposed a quasiclassical model for nuclear collisions,
glie wavelengthA =h/[ 27mkT] 2, where the Pauli exclusion principle is simulated by a

Dimensionless parameterfurthermore, we define some momentum-dependent two-body interaction. Later Kirsch-
dimensionless parameters: the Gell-Mann—Brueckner paranibaum and Wilets incorporated the Heisenberg principle by
eterr=d/ag, the degeneration parametefd or nA3, and  another momentum-dependent contribution. The hydrogen
the coupling parametdr=1/d. ground state was reproduced exactly; the ground states of H,

In the limit when the average distance is large in compariHe, Li, Ne, and Ar were given better than 15%. Cohen ap-
son with the Bohr radius, i.e., if;=1 the electron gas be- plied this model to atoms with highet values and derived
haves classically. The classical case was treated analyticalhgasonable results for the ground states of all atoms up to
by Abe and others, Monte Carlo calculations in a wide rangeZ=38. In general, the quasiclassical approach based on
of I' values were carried out e.g., by Brush, Sahlin andnomentum-dependent potentials gives energies being be-
Teller, DeWitt, Ichimaru, and other workersee[1-4]). tween Thomas-Fermi and Hartree-Fock calculations. Dorso,
Quantum corrections to the classical case that are relevant Bluarte, and Randrup presented quasiclassical simulations for
moderate values of; were investigated by De Witt and the free Fermi gas by using a Gaussian interaction potential
many otherg5-10]. depending on the distance in the phase spa8glg.

All the analytical calculations mentioned so far cover only  The conclusion from the papers cited above is that at least
limiting cases, such as, e.g,<1 orI'<<1. This is the rea- in some approximation quantum mechanical effects and in
son why simulations are of great interest. We mentioned alparticular the Heisenberg and the Pauli principles may be
ready the extensive Monte Car{C) calculations for the incorporated into momentum-dependent potentials.
classical region. Classical molecular dynam(btD) calcu- Such a quasiclassical approach has of course several lim-
lations were presented by Hansetnal. The particular inter- its, which are basically connected with the trajectory con-
est in molecular dynamics calculations is connected with theept. We mention, for example, the principal difficulty in
fact that they also give us access to nonequilibrium properdescribing microspic quantum effects such as tunneling, and
ties [11]. For the guantum region the available material ismacroscopic quantum effects such as superfluidity and su-
less exhaustive. In particular we mention the Monte Carlgperconductance. Our aim is only the calculation of standard
calculations at low temperatures given by Ceperley and Alimacroscopic properties, which have a well-defined classical
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limit. From this point of view we consider the results ob- .
tained so far for momentum-dependent potenfia®-22 as <A>:J A(q,p)p(d,p,t), 8
encouraging. The aim of this paper is to transfer this type of
model to the macroscopic electron gas. where

Let us start our investigation with some general consider-
ations. The main idea of the quasiclassical method is to i
model the Heisenberg uncertainty and the Pauli exclusion by A(q,p)zex;{ 7 Pq
certain constraints in the phase space. These constraints have
to be included in interaction potentials. Potentials are scala|L|ere g and p are a set of coordinates and momenta,

functions depending on particle distances. We consider tw . . . -
electrons with positions; ,r; and momentap; ,p; . Then we %\(q,p) is the Wigner representation of the observab|end

may define scalar distances in different ways, e.g., in coorg(q'p). Is the so-called Wigner distribution function. For an
dinate space N-particle system we have

AEX[{‘F%—p ql. (9)

ry=lri=rjl, 1) A=ra, - (10
in momentum space, P=P1, ... PN, (13)
pii=Ipi—pjl, (2)  wherer; andp; are the individual coordinates and momenta.
The Wigner representation of the Hamilton operator is iden-
or in phase space, tical to the classical Hamiltoniarithe classical energy
H(a,p)=T(p)+V(q).
Aij=[(rij I10)*+(pij I po) M2 3 If p is the density operator of the system, then the Wigner

. _ _ _ distribution function is given by
These expressions are possible candidates for the variables

on which the potentials are depending. Another potential " 1 1
candidate is the product P(q,p;t)ICOHSIXfP q+5Q.a4-5Qit
wip = =il *[pi—pyl. ) i
! L P X ex —gQ p| dQ. (12

Indeed these combinations have already been used to incor-

p?r[e)xte quatnttljmilge_chznicatlj effect;rt]s. (Ijr) i)articullart:]he tEeor)f'he Wigner density satisfies an integrodifferential equation,
ot Dorsoet al [. | is based on the distance N the Phasenich is equivalent to an infinite order partial differential
spaced;; and Wiletset al. [21] use the expressioR;;. In equation, which readg8]

e ,

these papers the Pauli exclusion is modeled by the constrain

Aij=1 ©) atp(q,p)=f K(a,9',p,p")p(q’,p")dg’'dp’ (13

with the additional condition that .
with
Pol o=7i. (6)

K y ,1 ] "= {124 i " — + F—
Further, the Heisenberg uncertainty is modeled by the con- (9.9".p.p")=cons f exflir(p’=p)+ivia’—a)]

straint

xﬁl{H( ' 1h ’+1h ) H( ’
q —shy, prsa7—H(Q
Since both these constraints are formulated in phase space, it + lﬁ v, p' — lf”-) dydr. (14)
seems to be natural to use interaction potentials that depend 2 2

on phase space distances, contrary to the classical case where ) i o

in general only distances in space appear. A principal problem with the Wigner density is that
Since our approach is based on a dynamics in phas%(q'p’t) is not- ngcessarlly positively dgflnlte. Iq other

space, we will study in the next section the relation betwee/0rds, p(d,p,t) is in general not a probability density. On

quantum mechanics and phase space representations fronf’§ other hand, the space distribution as well as the momen-
more general point of view. tum distribution have the character of proper probability den-

sities
II. WIGNER REPRESENTATIONS AND DYNAMICS
IN PHASE SPACE p(q,t)zf dp p(q,p,t),

Wigner showed that quantum mechanical averages of an

observableA may be formulated as phase space averages
(27,28 / g P g p(p,t)=f dq p(a,p.t).

(15
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Alternative possibilities to introduce a density in the space okible way is to blow up the phase space by introducing spe-
coordinates and momenta were investigated, e.g., by Podligific quantum variables. This route is chosen in the so-called
chuk[29] and Mirbach and KorscfB0]. The Husimi phase wave-packet dynamics, which introduces the size and the
space density is defined as the overlap of the wave functiogpeed of the spreading of the wave packet as additional vari-
with a minimum uncertainty wave packétiso denoted as a ables[17,23—26. Since this method leads to several difficul-

coherent stafe ties in formulating a statistical mechani2s,26,31, we try
(x—q)% ipx here the alternative way based on effective potentials also
¥o(X) =consix ex;{ - —2+—) (16) called pseudopotentials. The easiest way to introduce
219 h Heisenberg quantum effects is to introduce quantum con-

Herer, is the mean dispersion of the wave function. Thestrain_ts at smal_l distances by certain_ modifications of the
Husimi density is non-negative and possesses quite interetiassical potential§32-34. Kelbg derived purely space-
ing properties with respect to the dynamj&g)]. dependent pseudopotentials for the electron gas that were
Here we will follow another route: we postulate from the exact up to the first order ia” [32,35.
very beginning that—at least in some approximation—a Deutsch, Hansen and others used pseudopotentials of
phase space dynamics of Liouvillelamilton) type can be similar shape but with a simpler representat[d3,33,34.
derived from the exact Wigner equation. A Liouville equa- Recently quantum mechanical effective potentials were in-
tion may be obtained by developing the integral keridel corporated into the formalism of integral equations for the
with respect to the variableg and 7. In the linear approxi- pair distribution function36]. A principal disadvantage of
mation the integrodifferential equation for the Wigner func- effective potentials depending only on the space coordinates
tion reduces to a first order partial differential equation. Thiswas so far that a Hamiltonian dynamics without momentum-
effective Liouville equation generates a non-negative phasgiependent interactions necessarily leads to classical momen-
space density by the dynamics tum distributions. Since the momentum distribution of the
. _ dense electron gas shows strong quantum effects due to the
(0P, +{H(a,p;A),p(4,P)}=0. 17 Fermi character of the electrons, we include here
According to Klimontovich[28] we may incorporate the momentum-dependent interaction terms. As mentioned al-
Pauli principle into the effective Hamiltonian and find for ready this approach was proposed by Wilets and others
Fermi particles the quasiclassical Hamiltonian [20,21] and the main physical ideas leading to this approach
were explained already in the Introduction. The physics of
i i velocity-dependent interactions is not well understood yet
H(q,p.ﬁ)=k21 2m, k,|2:1 ®(r) but this line of thought has proved to be very successful in
practical application§18-22.
1 N P The question of how to determine the “effective interac-
- (Zﬂ)akél ‘D<7> (), (18 tion” V(q,p) for the electron gas will be considered in detail
’ in the next section.
where @ is the Fourier transform of the potentidl. The As the main criterion for the choice of a good effective
effective HamiltoniarH (g, p;%) is the generator of a Hamil- Hamiltonian we .WI|| use the condition that for some rgfe(—
ton type phase space dynamics. The main problem wit§f"ce state the distance of the space and momentum dlstrlbu—
simulations on the basis of this Hamilton type dynamics istions generated by the Hamiltonian are as close as possible to

that, in spite of the fact that the Fermi distribution is a solu-the €xact distributions for that state:
tion of Eq.(17), a simulation will not necessarily converge to
it. We just have to remember that any functiontbiyields a
stationary solution of the Liouville equation. Nevertheless
we may use the effective Hamiltonian for MC simulations if
we introduce the Pauli principle by constraints. For example,
we may introduce into discrete step MC simulations the con- ‘ f dg po(p.q) —po(p)H =min. (20
straint that any step that brings a one-particle state into a
ellipse around one other particlg; <1 is not carried out. By
this additional constraint to the simulations the Fermi distri-
bution is obtained in an elementary way. In fact this con-&Nce state.

straint leads to a distribution where on average each fermion IT. tzet nteﬁt s?ctlton the pro‘;f?d#r_e descgbfd altaove \]fv'" bet
occupies not more than a volunt€ in the phase space, applied fo the electron gas, Which 1S a model system ot grea

which is excluded for other fermions importance for plasma physics and solid state physics.

So far our effective Hamiltonian does not include quan-
tum effects of Heisenberg type. In this way the questionlil. EFFECTIVE ELECTRON-ELECTRON INTERACTION
remains to find the best approximative way to reduce the
integral Wigner equation to a first order partial differential
equation whose characteristics may be interpreted as trajec- As we have pointed out above, it is our aim to reproduce
tories in phase space. This approximation should take intboth the momentum and the phase space distribution of our
account Pauli as well as Heisenberg quantum effects. system in a good approximation. As is well known, the ideal

In order to get reasonable approximations we have to inelectron gas is characterized by a Fermi distribution of the
clude further nonclassical features in the dynamics. One posnomenta:

N 2 N

U dp po(p,Q)—po(Q)H=min, (19

In general we will choose the equilibrium state as the refer-

A. Momentum and space distributions
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-1 We have here two kinds of electron-electron interaction: the
(21)  so-called Pauli potentiaVp and a Coulomb interaction
modified by a certain functiofr(x,y). In order to derive
Further, the pair distribution in the coordinate space isSffective expressions of this type we follow the general idea
known [27]. We have, for example, in the degenerate casd® average the Hamilton operator with respect to test wave
for two electrons after averaging with respect to the spins functions

+1

p2
f(p)= exp(ﬁm—ﬁ,u

2 ~
g,(r)=1-— % %(sinx—xcoso if T<Te. (22 H(q,p;%)= f dxyig (X)H ho(X). (28)
In the opposite case of nondegenerate electron the distribd-"® Main candidates for the choice of test wave functions are
tion reads symmetrized or anti-symmetrized combinations of minimum
uncertainty wave packets after Ed.6). Defining an effec-
1 r2 tive Hamiltonian in this way was suggested by the so-called
gx(r)=1- > ex;{ - F} if T>Tg, (23)  wave-packet dynamics, which has found recently quite suc-

cessful applications to plasm485,26,31,37. Since mini-
wherex=r/r,, the Wigner length is,=#/pg , the thermal mum wave packets contain at least one free parameter, this

de Broglie length is\ =#/mKkT, the Fermi momentum is choice still gives us some freedom in the effective Hamil-

pe=7%(97/4)*3d, and the Fermi temperature is tonian that will be used below.

Te=pZ/2mk. . .
In the general case, which includes the Coulombic inter- B. Pauli potential
actions, the space and momentum distributions may be ex- Restricting the calculation described above to pair effects
pressed by the wave functions and averaging over the two spin configurations of electrons
we get
S(rq, ...,rN)=const><E exp(— BE,) A2
Vp(p,r)=Voexp(— A%)————, (29
l1—exp—A
Xl’\ljn(rlv '--!rN)|21 (24) q )
with
S(py, . .. pn)=const X exp(— BEy) 52
Vo= 2. (30)
X | (p1, - .. .PN) |2 (25) 2m g
We note that the distributionsS(ry,...,ry) and Thisis atwo-body interaction depending on the phase-space
S(py, . .. ,py) are often called Slater sums. The Slater sumglistance already introduced in the Introduction:
for Coulombic systems were studied in detail by several au- s
thors[2]. Az_P_+ r (31)
We see that with the knowledge of the Slater sums one of psry

the conditions for the phase space density given abBus.

(19) and(20)] can be fulfilled in an exact way. For example, In our simulations we used a simplified Pauli potential,
we will get exact space distributions in equilibrium by the which is purely Gaussian as already suggested by Dorso
choice et al.[18].

V(rq, ... rn)=—KTInS(rq, ... ry). (26) Vp(p,r)zvoeﬂzlz. (32)

These potentials were often called quantum statistical effecFigure 1 shows that the Dorso potential is in very good

tive potentials and were used in calculations of the partition, ... ant with the spin-averaged Pauli potential obtained
function [2,7,13. A severe disadvantage of this simplestfr?)m Eq (28\)NI pin-averag ulrp : :

choice of the effective potential26) is, however, that—in In the Dorso potentiat, andV, are considered free pa-

spite of the correctness of thermodynamic fur'Ct'ons_therameters. In Sec. Il D we will give an estimate for these free

lmo.rt'nﬁ_r;]tumfdlstrlbut;]ons ?re corr(re]c]:[ or;)lyttln thhe 'Boltzmznrj arameters with respect to the free Fermi gas. Considering
Imit. Theretore, we have o search for betier Choices and, iy, q two-particle relative motion, three different kinds of be-

particular, for a correct representation of the Fermi diStribu'havior are observetFia. 2): (1) Free motion if the fermions
tion (21) for the momenta. This is the ultimate reason that we tFig. 2): (1)

decided t del th i lect " b are far apart(2) distorted motion(scattering, and (3) the
ecided 1o model the quantum electron System Dy a quaslpg|i-forbidden” area. Of course, if the particles are ini-
classical Hamiltonian with the following structure:

tially put in this forbidden area they will remain there. But
there is no way for them to get into this area if they have
+2 ezF(rj ﬂ) been outside; i.e., the region in phase space forbidden by the

o' Po Pauli principle is separated from the “normal” region by a
(27 separatrix.

N2
Pi Fij  Bij
H=> ——+> Vp| =, —
21 2m |§<:1 P(ro Po

i<j
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FIG. 1. Comparison of several expressions for the Pauli poten-
tial: potential averaged over spins after £29) (solid line), poten- FIG. 3. Different modified Coulomb Interactions: Kelbg poten-
tial after Eq.(32) (bold line); potential between particles with par- tial (solid line) and the wave-packet interactiddashed ling at
allel (upper dashed lineand antiparallel spinfower dashed line ~ short distances. The bare Coulomb potential is also sh@et-

. . dashed ling
C. Coulombic interaction

As already pointed out, we consider here a modified CouWe mention also another expression, which was obtained
lomb interaction rather than the bare Coulomb potentiaimuch earlier by Kelbd32] using the Slater sum technique
through which purely classical particles would interact. This
modification is described by the functidh[Eq. (27)]. The F(x)={1—exp(x?)+ m(x)[1—erf(x)]}/(rox). (35)

procedure of averaging with respect to Gaussian wave func- i , i
tions described above yields In the KTR potentiak , is connected to théconstant width

of the wave packets and has to be fitted for any particular

X system. In the Kelbg potential, is equal to the thermal de
erf(E) ar 1 2 Broglie wave lengthh=A/\27. Figure 3 shows the two
F(x,y):rol———zwexp{ —2} (33)  resulting modified Coulomb potentials. The width of the
X ym m T Mo wave packets was chosen in a way that the two potentials are

equal atr =0. This leads to the conclusion that at least in the
limit of the nondegenerate electron gagshould be equal to
the thermal de Broglie wavelengtiy=\.

wherex=r/ry andy=p/py. In our simulations we used so
far only the first momentum-independent contribution, which
was obtained already by Klakoet al. [25] using Gaussian

wave packet$Klakow-Toepffer-ReinhardKTR) potential:
D. Fitting the free potential parameters

X
erf( T) 1. The minimal uncertainty condition
F(x)= S (34 Following the approach of minimal uncertainty wave
0 packets we assume that the Heisenberg condition holds as an
identity
Ar
1
(8p)(8a0)=5h, k=123 (36)
This leads to the relatiopg by rq po=7. Further we assume
4 o that the momentum uncertainty is given by that of the free

Fermi gas
(8p)?=2meyn, (37)

wheree;, is the mean kinetic energy of the free Fermi gas.
In this way we get

A 2
? P5=35 M €gin. (38)
FIG. 2. Lines of constant energy for the two-particle relative

motion in the Pauli potential. Depending on the initial phase spacérhIS condition yields at high temperatures

distance of the particles three types of motion are observed: free 2_ kT
orbits, distorted orbitgscattering, and closed orbits of rather high Po= ’
energy, which therefore contribute little to thermodynamical aver- 2 2 s
ro=h°/mkT=\%, (39

ages at low temperatures.
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Vo=kT, is approximately fulfilled.
In conclusion of this discussion we may state that there is
where \ is the thermal de Broglie wavelength of relative no unique choice for the Pauli potential so far. We need a

motion. In the limit of low temperatures we get compromise between the different constraints, which re-
5 1.2 quires density- and temperature-dependent parameters. As
Po=5 PF, far as we can see a good choice is
4 2/3
r§=§(9—) d?=0.67%?, (40) , ,  h2
™ po=mo, M= 21me "’ Vp=0, (49
V0: é €F.
where

2. Other estimates for the Pauli potential

At low temperatures Dorset al. gave an estimate fov
based on the consideration ffp) at T=0 [18]

7
w1

In the calculation leading to E@¢41) the Pauli potentiaV/p is
part of the Hamiltonian but is not considered to contribute to
the internal energy. Changing this leads to another estimate

3) 5/ 512 A. Monte Carlo and molecular dynamics

VBZ): (E geF:O.ZS&F. (42) with MC initial conditions

2
0=0(T,n)= 3 &n(T,N) (50)
3
5/22
= er=0.928 (41)

is the effective temperature of the free Fermi gas.

IV. MANY PARTICLE SIMULATIONS

7
5

For equilibrium conditions, Monte Carlo calculations are

For ro, we shall use the value from E@40). In order to the easiest way to calculate_p_hysical properties, such as, e.g.,
improve the expression for, we investigate the pair distri- the average energy. In addition to this method we use here

bution functiong,(r). In the case of high temperatures we also molecular dynamics, starting with initial conditions ob-
obtain with the Dorso potential tained from previous Monte Carlo runs.

Usually molecular dynamics simulations addressing equi-
1 o o librium properties consist of two parts: first the desired tem-
okl(r)= —3] f dp;dp.exd — BH(r1,r2,p1,P2)] perature is adjusted using some thermostat, while in a second
V2mmkT phase the energy is kept constant and measurements are per-
43 formed.
Since most known thermostats do not work in the case of
Kl Vo 1 r? momentum-dependent interactions, we replaced this first
92(N=1-17 \/maex 2 equilibration phase with a MC simulation using the algo-
0 rithm of Metropoliset al.[38]. This algorithm is independent
The comparison with E(23) leads to of any particular form of the interaction. To perform the
molecular dynamics simulations we used a fourth order

(44

3/2

(3)_5 Runge-Kutta integrator with step size control. The runs were
Vo _EkT' (45 of length of order 50 times the inverse plasma frequency.
This equation may be written as B. Free Fermi gas
53/2 As a first step towards the simulation of the electron gas
Vo=§6km- (46) we considered the free Fermi gas. This model consists of

classical particles only interacting through the Pauli potential
If we extend this relation to low temperatures it yields a thirdd€scribed above. The potential parameters were set accord-

low temperature estimate ing to Sec. Il D. Periodic boundary conditions were used.
We generated Monte Carlo runs oik20° configurations

53/2 using 64 particles. Histograms for the momentum distribu-

Vgg):ﬂekin:0-27%F- (47)  tion and the radial pair distribution are shown in Figs. 4—7;

here Figs. 4 and 5 correspond to the case of a degenerate
As we see, this is very similar to the estim@€). Combin-  Fermi gas and Figs. 6 and 7 to a nondegenerate Fermi gas. A
ing the results given above we see that there exists a tengomparison with the analytical formulas for the Fermi distri-
peratureT, at which the high- and low-temperature param-bution[Eq. (21)], the Boltzmann distribution, and the radial
eters are continuously connected. An estimate for thdair distribution of the degenerate Fermi g&s. (22)], and

transition temperature i4~1.32;¢ and the condition of the nondegenerate electron d&. (23)] is made. We
mention that the relatively large fluctuations at small dis-

n\=1 (48) tances and/or momenta are due to statistical problems.
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FIG. 4. Momentum distribution function of the free Fermi gas.  FIG. 6. Momentum distribution function of the free Fermi gas.
Results of a simulaton with 64 particles, density Results of a simulation with 64 particles, density
n=6.7x10%° cm 3, temperaturd =325 K=0.1T, potential pa- N=6.7X10"" cm 3, temperaturdl =3.5X 10° K=23T¢, potential
rametersV/,=0.26 eV,r,=7.1x10"8 cm (histogram, the Fermi-  parameter¥/,=21.14 eVr,=3.5x10"° cm (histogram, and the
Dirac distribution(solid line) and the Maxwell distributioridashed ~ Fermi-Dirac distribution(solid line).
line).

The results of our simulations are represented in Figs. 8
C. Electron gas and 9 and will be compared to the analytical theory in V.

In order to simulate the “real” electron gas the Coulomb
interaction is added to the free Fermi gas model. We used theV. COMPARISON WITH THE ANALYTICAL THEORY
modified Coulomb potential from E§34). The parameter,
was set to the value of the parametgroccurring in the ] i )
Pauli potential. Since our modified Coulomb interaction dif- ~ Let us start with the assumption that the energy density of
fers from the bare Coulomb interaction only for short dis-the electron gas can be split into a classical and a quantum
tances the Ewald sum technique for handling the long rangg'echanical part:
part could be used. We carried out several Monte Carlo runs
of 2x10° for ensembles of 64 electrons embedded in a uni-
form positive background. The parameters were chosen in

where uy is the energy density of the classical one-
such a way that degenerate as well as nondegenerate condi- . N )
.component plasma and,, is by definition the difference

tions are covered. For some of the temperature-density paits . . -
used we performed calculations for several numbers of parigetween the full and the classical energy density. Explicit

ticles up to 512 and extrapolated to infinite particle numbersc'?‘lcma.tlons for the classical energy of the electron gas were
iven first by Abe for the low density case. An overview of

using a curve of the forrE(N) =a+b/N+c/N2, whereE is 9 wical ical knowl { the classical
the total energyN the number of particles, angb,c are U analytical and numerical knowledge of the classical en-

constants determined by a least-squares fit ergy density as well as a new Padeerpolation formula that
y q ' connects the low density analytical formulas with the high
. . . density MC results was recently given by Kahlba[@8].

A. Analytical formulas for the internal energy

U=Ug+Ugy, (51

1.0
L 125 | '
08 | ]
| ] 1.00 | [ 7/ A e T e
. 06} ] il
B _/ | 0.75 | i
04 | >
L | 0.50 |
02t 1
L ] 025 |
0'Ooo 0.2 0.4
: : ' 0.00 ) : : :
rL 0.0 0.1 0.2 0.3 0.4 0.5

r/L
FIG. 5. Radial pair distribution function of the free Fermi gas.

Results of a simulation with the same parameters as in Figis4 FIG. 7. Radial pair distribution function of the free Fermi gas.
togram and the functiorg,(r) from Eq.(22) (solid line). L denotes  Results of a simulation with the same parameters as in Fibisé
the size of the basic simulation cell. togram and the functiorg,(r) from Eq. (23) (solid line).
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os | 8Bo(T)=[Ba(T) — lim By(T)]. (54)
’ h—0
04 ¢ For this difference function we will find an exact expression
by using methods based on the quantum scattering theory
= 03 1 [8]. First we transform the two-particle trace to a contour
= ool B S - integral over the resolvent. Then the quantum mechanical
§ ' ¥ ] second virial expression is expressed by
01 F LA B B Ao 7323
B(T)= — exp(—Bz)F(z)dz, (55
0.0 N d 2i Jc
-0.1 : : = A —7]1-THO—
o 20 700 F(z)=Tr{[H—z]-[H"—z]}. (56)

I

S

Here H is the two-particle Hamiltonian anHi® its kinetic
FIG. 8. Electron gas: internal energy per particle as a function ofart. The full quantum contribution may be found by carry-

the Gell-Mann—Brueckner parameter. results of our simulations ing out the trace using the known Jost functions of the Cou-

for T=150 K (near ground staje(®), T=22000K (A), and lomb scattering problem. We get for the electron gas

T=47 000 K (*). Thelines show the Padermula from[44] and

the open circles represent results of quantum Monte Carlo simuladB2(T)=2m\3{Q(— &)+ DE(— &) — (£ 3/6)[In(£) — D]}

tions[12]. (57)

We will consider now the quantum mechanical CorreC_The virial functionsQ andE are given by the infinite series

tions to the classical energy density and will give a new anc}r;.at. was mtroduqed and discussed first in 1988 The ex-
very simple derivation of the known result for the quantumP/ICIt representations are

effects: QX=anx",  E(X)=enx", (59
qu:u_ucl' (52) 1 771/2 1 ll 3 1 c
=—_, =——, =———=In3—-—C,
According to this splitting we have to consider the difference o 6 % 8 % 12 6 12
between the free energy density of a one-component quan- (59
tum plasma and that of a one-component classical plasma. C=0.577216
This expression is convergent and we may, at least in the o T
case of lower density, neglect screening effects. In the low 12
density limit we get _m%in=2)
dn=7%n if n=4. (60)
2"T'(1+n/2)
=—KTn?6B,(T).
Hau 2B2(T) 63 Further
Here 6B,(T) is the difference between the quantum and the 112 1 112 2
classical second virial coefficients: Com . =, €= In2 es=—, (61)
4" 2’ 4 ' 72’
{-008 n m1-22""¢(n—-1)] .
1 -0.10 % en= 2“F(1+n/2) if n=4. (62)
17012 2 { -0.02
1-0.14 m Similar results as reported here for the electron gas were
1-0.04 = obtained recently for symmetrical quantum plasnjde].
s The result for the quantum contribution given above is up to
17006 = the orderO(n?), in full agreement with a result obtained
1 Zo.08 recently by Alastuey and Per¢#1]. The next order in the
density seems still to be subject to discussipdsl0,43.
1 -0.10 Here we shall use only the contribution of the or@m?)
with which all authors in the field now agree. In the other
0.0 01 02 o3 od os 012 limit of the strongly degenerated electron gas the known ana-
k.T [2 Ry] Iytical results for the internal energy per electron may be

expressed in the form
FIG. 9. Electron gas: exchange-correlation energy per particle as

a function of the temperature for,=6.2. Simulations @) com- 221 0.916
pared to the Padéormula from [44]. The inset shows the low ufryd]= rSE - < +0.0622Ims—0.096

temperature partT<Ty, k T4=1.6 eV,Vy,=12 eV, r,=3.3
x10°8 cm). +0.018 Jnr+ - - -. (63
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There exist several efforts to connect the known limit cases )
by Padeapproximations. A survey of several Paalgproxi- 0.9 \‘\
mations was recently given by Stolzmann and dBler [43] | AN
We shall use here for comparison with the numerical results 0.7 \‘ N\
a formula derived by Ebeling and Lehmajv¥]. i \\
= 05¢ ‘\ N
B. Comparison of analytical and numerical results N \ \\\
In Fig. 8 the internal energy of the electron gas as a func- 03| \\ ‘\\
tion of the Wigner-Seitz radiuss, i.e., as a function of the \ S
density, is shown for several temperatures. The lines repre- o1 | /\\ \\\\\\\\\\\\\ ]
sent the values obtained with the Pddemula from [44]. /(\\\ AN I
For the densityn=6.7x10?* cm 3(r¢=6.2) Fig. 9 shows 01 A T
the internal energy as a function of the temperature also com- 0.0 20.0 40.0 60.0 80.0
pared to the Pad®rmula from[44]. We see that the overall t [ units of @, ']

agreement between the analytical formulas and the simula-
tions is rather good. The deviations are all within the error FIG. 10. Velocity autocorrelation functions from MD simula-
bars of the simulations. Only at the lowest temperatures is §0ns for I'=0.15 (dot-dashed lineandI'=1.0 (dashed ling and
systematic deviation observedee inset in Fig. 9 which ~ ['=60.0(solid line).
leads to a finite specific heat a&=0. We may therefore ) ) )
conclude that at low temperatures and high degenefflacy ~COomMparison with quantum Monte Carlo calculations of the
r~6 corresponding tT<1CG® K) the quasiclassical model Mean energy for low temperatures and with Paperoxima-
developed here breaks down. At conditions of weak or moglions for several finite temperatures shows that at least in
erate degeneracy, however, our model yields quite reasoff€rmodynamic equilibrium and moderate degeneracy our
able results. simple model yields reasonable results. The main advantage
of molecular dynamics simulations in comparison to Monte
V1. DISCUSSION Carlo methods is that nonequilibrium properties are acces-
sible. As a first example we have given in Fig. 10 the
We developed in this work a simple quasiclassical modelelocity-velocity autocorrelations as a function of the recip-
of the quantum electron gas based on a dynamics with arocal plasma frequency. The curves show the typical behav-
effective momentum-dependent Hamiltonian. The quantumior observed by Hansen, McDonald, and Pollptk] for the
mechanical effects corresponding to the Pauli and thelassical electron gas. A more detailed comparison is
Heisenberg principles were modeled by constraints in thglanned for a forthcoming paper.
Hamiltonian. By using the concept of minimum uncertainty We cannot expect, however, that the present model,
wave packets, momentum-dependent effective potentialghich was obtained by fitting the potential to equilibrium
were derived. The free potential parameters are fitted in sucproperties, will describe all nonequilibrium properties in a
a way that the most important properties of the free electromuantitative way. Further improvements of the model might
gas, in particular the momentum-distribution and the paibe unavoidable. We may hope, however, that at least near
distribution functions, were described reasonably at least foequilibrium some realistic features are still reflected by the
conditions where the degeneracy is not too strong. model.
We simulated a many-electron system with periodic
boundary conditions by using Monte Carlo and molecular
dynamics calculations. Simulations were carried out for en-
sembles of 64-512 electrons. The mean energy was calcu- The authors thank Yu. M. Klimontovich, B. Militzer, V.
lated for several temperatures between 100 and 47 000 K. Rodlipchuk, and J. Schnack for helpful discussions.
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