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Many particle simulations of the quantum electron gas using momentum-dependent potentials

W. Ebeling and F. Schautz
Institut für Physik, Humboldt-Universita¨t zu Berlin, Invalidenstraße 110, D-10115 Berlin, Germany

~Received 10 December 1996!

A simple quasiclassical model of the quantum electron gas based on a quasiclassical dynamics with an
effective momentum-dependent Hamiltonian is developed. The quantum mechanical effects corresponding to
the Pauli and the Heisenberg principles are modeled by constraints in the Hamiltonian. By using the concept
of minimum uncertainty wave packets, momentum-dependent effective potentials are derived. Monte Carlo
and molecular dynamics calculations are carried out for ensembles of 64–512 electrons and calculations of the
internal energy at several temperatures are given. A comparison with quantum Monte Carlo calculations of the
mean energy for low temperatures and with Pade´ approximations for several finite temperatures show that at
least in thermodynamic equilibrium our simple model yields reasonable results.@S1063-651X~97!13807-7#

PACS number~s!: 52.65.2y, 71.10.Ca, 03.65.Sq, 05.30.Fk
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I. INTRODUCTION

The electron gas on a positive background belongs to
most interesting model objects in physics@1–4#. Electrons
have strong interactions due to Coulombic forces and str
quantum statistical effects due to the Fermi character. S
eral limiting cases were treated analytically. Important
sults on the ground state and the thermodynamical prope
at finite temperatures were obtained already in the analy
work of Wigner, Macke, Gell-Mann, and Brueckner~see,
e.g., @1–3#!. Let us consider now the characteristic leng
and dimensionless parameters of an electron plasma
densityn and temperatureT.

Characteristic length parameters:The average distanc
of the electrons is the Wigner-Seitz radiusd5@3/4pn#1/3;
the Bohr radius is defined asaB5\/me2. Other characteris-
tic lengths are the Landau lengthl 5e2/kT and the de Bro-
glie wavelengthL5h/@2pmkT#1/2.

Dimensionless parameters:Furthermore, we define som
dimensionless parameters: the Gell-Mann–Brueckner par
eterr s5d/aB , the degeneration parameterL/d or nL3, and
the coupling parameterG5 l /d.

In the limit when the average distance is large in comp
son with the Bohr radius, i.e., ifr s>1 the electron gas be
haves classically. The classical case was treated analyti
by Abe and others, Monte Carlo calculations in a wide ran
of G values were carried out e.g., by Brush, Sahlin a
Teller, DeWitt, Ichimaru, and other workers~see @1–4#!.
Quantum corrections to the classical case that are releva
moderate values ofr s were investigated by De Witt an
many others@5–10#.

All the analytical calculations mentioned so far cover on
limiting cases, such as, e.g.,r s,1 or G,1. This is the rea-
son why simulations are of great interest. We mentioned
ready the extensive Monte Carlo~MC! calculations for the
classical region. Classical molecular dynamics~MD! calcu-
lations were presented by Hansenet al. The particular inter-
est in molecular dynamics calculations is connected with
fact that they also give us access to nonequilibrium prop
ties @11#. For the quantum region the available material
less exhaustive. In particular we mention the Monte Ca
calculations at low temperatures given by Ceperley and
561063-651X/97/56~3!/3498~10!/$10.00
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der @12# and several investigations devoted to the simulat
of two-component plasmas@13–16,25,26#.

Recently, quasiclassical simulations of many particle s
tems have received a great deal of interest because of
relative simplicity. As a first example we mention the sem
classical approach to molecular dynamics developed
Hansenet al. @11#.

In this paper a quasiclassical approach to the quan
electron gas using momentum-dependent potentials is de
oped. Our approach follows a line of thought developed
the last twenty years by a series of authors, such as,
Heller, Wilets, Kirschbaum, Dorso, and Randrup. In the cla
of models developed by these authors the quantum eff
are approximated by certain constraints in the Hamilton
@17,18,20#.

In an early paper Wilets, Henley, Kraft, and Mackell
@21# proposed a quasiclassical model for nuclear collisio
where the Pauli exclusion principle is simulated by
momentum-dependent two-body interaction. Later Kirsc
baum and Wilets incorporated the Heisenberg principle
another momentum-dependent contribution. The hydro
ground state was reproduced exactly; the ground states o
He, Li, Ne, and Ar were given better than 15%. Cohen a
plied this model to atoms with higherZ values and derived
reasonable results for the ground states of all atoms u
Z538. In general, the quasiclassical approach based
momentum-dependent potentials gives energies being
tween Thomas-Fermi and Hartree-Fock calculations. Do
Duarte, and Randrup presented quasiclassical simulation
the free Fermi gas by using a Gaussian interaction poten
depending on the distance in the phase space@18,19#.

The conclusion from the papers cited above is that at le
in some approximation quantum mechanical effects and
particular the Heisenberg and the Pauli principles may
incorporated into momentum-dependent potentials.

Such a quasiclassical approach has of course several
its, which are basically connected with the trajectory co
cept. We mention, for example, the principal difficulty
describing microspic quantum effects such as tunneling,
macroscopic quantum effects such as superfluidity and
perconductance. Our aim is only the calculation of stand
macroscopic properties, which have a well-defined class
3498 © 1997 The American Physical Society
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56 3499MANY PARTICLE SIMULATIONS OF THE QUANTUM . . .
limit. From this point of view we consider the results o
tained so far for momentum-dependent potentials@18–22# as
encouraging. The aim of this paper is to transfer this type
model to the macroscopic electron gas.

Let us start our investigation with some general consid
ations. The main idea of the quasiclassical method is
model the Heisenberg uncertainty and the Pauli exclusion
certain constraints in the phase space. These constraints
to be included in interaction potentials. Potentials are sc
functions depending on particle distances. We consider
electrons with positionsr i ,r j and momentapi ,pj . Then we
may define scalar distances in different ways, e.g., in co
dinate space,

r i j 5ur i2r j u, ~1!

in momentum space,

pi j 5upi2pj u, ~2!

or in phase space,

D i j 5@~r i j /r 0!21~pi j /p0!2#1/2. ~3!

These expressions are possible candidates for the varia
on which the potentials are depending. Another poten
candidate is the product

k i j 5ur i2r j u* upi2pj u. ~4!

Indeed these combinations have already been used to in
porate quantum-mechanical effects. In particular the the
of Dorso et al. @18# is based on the distance in the pha
spaceD i j and Wiletset al. @21# use the expressionk i j . In
these papers the Pauli exclusion is modeled by the const

D i j >1 ~5!

with the additional condition that

p0r 0.\. ~6!

Further, the Heisenberg uncertainty is modeled by the c
straint

k i j >\. ~7!

Since both these constraints are formulated in phase spa
seems to be natural to use interaction potentials that dep
on phase space distances, contrary to the classical case w
in general only distances in space appear.

Since our approach is based on a dynamics in ph
space, we will study in the next section the relation betwe
quantum mechanics and phase space representations fr
more general point of view.

II. WIGNER REPRESENTATIONS AND DYNAMICS
IN PHASE SPACE

Wigner showed that quantum mechanical averages o
observableÂ may be formulated as phase space avera
@27,28#:
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^Â&5E A~q,p!r~q,p,t !, ~8!

where

A~q,p!5expF2
i

\
p qG ÂexpF1

i

\
p qG . ~9!

Here q and p are a set of coordinates and momen
A(q,p) is the Wigner representation of the observableÂ, and
r(q,p) is the so-called Wigner distribution function. For a
N-particle system we have

q5r 1 , . . . ,r N , ~10!

p5p1 , . . . ,pN , ~11!

wherer i andpi are the individual coordinates and momen
The Wigner representation of the Hamilton operator is id
tical to the classical Hamiltonian~the classical energy!
H(q,p)5T(p)1V(q).

If r̂ is the density operator of the system, then the Wig
distribution function is given by

r~q,p;t !5const3E r̂S q1
1

2
Q,q2

1

2
Q;t D

3expF2
i

\
Q pG dQ. ~12!

The Wigner density satisfies an integrodifferential equati
which is equivalent to an infinite order partial differenti
equation, which reads@28#

] tr~q,p!5E K~q,q8,p,p8!r~q8,p8!dq8dp8 ~13!

with

K~q,q8,p,p8!5const3E exp@ i t~p82p!1 ig~q82q!#

3\21FHS q82
1

2
\g, p81

1

2
\t D2HS q8

1
1

2
\g, p82

1

2
\t D G dgdt. ~14!

A principal problem with the Wigner density is tha
r(q,p,t) is not necessarily positively definite. In othe
words,r(q,p,t) is in general not a probability density. O
the other hand, the space distribution as well as the mom
tum distribution have the character of proper probability de
sities

r~q,t !5E dp r~q,p,t !,
~15!

r~p,t !5E dq r~q,p,t !.
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3500 56W. EBELING AND F. SCHAUTZ
Alternative possibilities to introduce a density in the space
coordinates and momenta were investigated, e.g., by Po
chuk @29# and Mirbach and Korsch@30#. The Husimi phase
space density is defined as the overlap of the wave func
with a minimum uncertainty wave packet~also denoted as a
coherent state!

c0~x!5const3expS 2
~x2q!2

2r 0
2 1

ipx

\ D . ~16!

Here r 0 is the mean dispersion of the wave function. T
Husimi density is non-negative and possesses quite inte
ing properties with respect to the dynamics@30#.

Here we will follow another route: we postulate from th
very beginning that—at least in some approximation—
phase space dynamics of Liouville~Hamilton! type can be
derived from the exact Wigner equation. A Liouville equ
tion may be obtained by developing the integral kernelK
with respect to the variablesg andt. In the linear approxi-
mation the integrodifferential equation for the Wigner fun
tion reduces to a first order partial differential equation. T
effective Liouville equation generates a non-negative ph
space density by the dynamics

] tr~q,p,t !1$H~q,p;\!,r~q,p!%50. ~17!

According to Klimontovich @28# we may incorporate the
Pauli principle into the effective Hamiltonian and find fo
Fermi particles the quasiclassical Hamiltonian

H~q,p;\!5 (
k51

N pi
2

2mi
1 (

k,l 51

N

F~r kl!

2
1

~2p!3 (
k,l 51

N

F̃S pkl

\ D d~r kl!, ~18!

where F̃ is the Fourier transform of the potentialF. The
effective HamiltonianH(q,p;\) is the generator of a Hamil
ton type phase space dynamics. The main problem w
simulations on the basis of this Hamilton type dynamics
that, in spite of the fact that the Fermi distribution is a so
tion of Eq.~17!, a simulation will not necessarily converge
it. We just have to remember that any function ofH yields a
stationary solution of the Liouville equation. Neverthele
we may use the effective Hamiltonian for MC simulations
we introduce the Pauli principle by constraints. For examp
we may introduce into discrete step MC simulations the c
straint that any step that brings a one-particle state intoD
ellipse around one other particleD i j <1 is not carried out. By
this additional constraint to the simulations the Fermi dis
bution is obtained in an elementary way. In fact this co
straint leads to a distribution where on average each ferm
occupies not more than a volumeh3 in the phase space
which is excluded for other fermions.

So far our effective Hamiltonian does not include qua
tum effects of Heisenberg type. In this way the quest
remains to find the best approximative way to reduce
integral Wigner equation to a first order partial different
equation whose characteristics may be interpreted as tra
tories in phase space. This approximation should take
account Pauli as well as Heisenberg quantum effects.

In order to get reasonable approximations we have to
clude further nonclassical features in the dynamics. One p
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sible way is to blow up the phase space by introducing s
cific quantum variables. This route is chosen in the so-ca
wave-packet dynamics, which introduces the size and
speed of the spreading of the wave packet as additional v
ables@17,23–26#. Since this method leads to several difficu
ties in formulating a statistical mechanics@25,26,31#, we try
here the alternative way based on effective potentials a
called pseudopotentials. The easiest way to introd
Heisenberg quantum effects is to introduce quantum c
straints at small distances by certain modifications of
classical potentials@32–34#. Kelbg derived purely space
dependent pseudopotentials for the electron gas that w
exact up to the first order ine2 @32,35#.

Deutsch, Hansen and others used pseudopotential
similar shape but with a simpler representation@13,33,34#.
Recently quantum mechanical effective potentials were
corporated into the formalism of integral equations for t
pair distribution function@36#. A principal disadvantage o
effective potentials depending only on the space coordin
was so far that a Hamiltonian dynamics without momentu
dependent interactions necessarily leads to classical mom
tum distributions. Since the momentum distribution of t
dense electron gas shows strong quantum effects due to
Fermi character of the electrons, we include he
momentum-dependent interaction terms. As mentioned
ready this approach was proposed by Wilets and oth
@20,21# and the main physical ideas leading to this approa
were explained already in the Introduction. The physics
velocity-dependent interactions is not well understood
but this line of thought has proved to be very successfu
practical applications@18–22#.

The question of how to determine the ‘‘effective intera
tion’’ V(q,p) for the electron gas will be considered in deta
in the next section.

As the main criterion for the choice of a good effectiv
Hamiltonian we will use the condition that for some refe
ence state the distance of the space and momentum dist
tions generated by the Hamiltonian are as close as possib
the exact distributions for that state:

I E dp r0~p,q!2r0~q!I5min, ~19!

I E dq r0~p,q!2r0~p!I5min. ~20!

In general we will choose the equilibrium state as the ref
ence state.

In the next section the procedure described above will
applied to the electron gas, which is a model system of g
importance for plasma physics and solid state physics.

III. EFFECTIVE ELECTRON-ELECTRON INTERACTION

A. Momentum and space distributions

As we have pointed out above, it is our aim to reprodu
both the momentum and the phase space distribution of
system in a good approximation. As is well known, the ide
electron gas is characterized by a Fermi distribution of
momenta:
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56 3501MANY PARTICLE SIMULATIONS OF THE QUANTUM . . .
f ~p!5FexpS b
p2

2m
2bm D11G21

. ~21!

Further, the pair distribution in the coordinate space
known @27#. We have, for example, in the degenerate c
for two electrons after averaging with respect to the spin

g2~r !512
1

2F 3

x3 ~sinx2xcosx!G2

if T!TF . ~22!

In the opposite case of nondegenerate electron the dist
tion reads

g2~r !512
1

2
expF2

r 2

l2G if T@TF , ~23!

wherex5r /r W , the Wigner length isr W5\/pF , the thermal
de Broglie length isl5\/AmkT, the Fermi momentum is
pF5\(9p/4)1/3/d, and the Fermi temperature
TF5pF

2/2mk.
In the general case, which includes the Coulombic int

actions, the space and momentum distributions may be
pressed by the wave functions

S~r 1 , . . . ,r N!5const3( exp~2bEn!

3uCn~r 1 , . . . ,r N!u2, ~24!

S~p1 , . . . ,pN!5const3( exp~2bEn!

3uCn~p1 , . . . ,pN!u2. ~25!

We note that the distributionsS(r 1 , . . . ,r N) and
S(p1 , . . . ,pN) are often called Slater sums. The Slater su
for Coulombic systems were studied in detail by several
thors @2#.

We see that with the knowledge of the Slater sums on
the conditions for the phase space density given above@Eqs.
~19! and~20!# can be fulfilled in an exact way. For exampl
we will get exact space distributions in equilibrium by th
choice

V~r 1 , . . . ,r N!52kTlnS~r 1 , . . . ,r N!. ~26!

These potentials were often called quantum statistical ef
tive potentials and were used in calculations of the partit
function @2,7,13#. A severe disadvantage of this simple
choice of the effective potentials~26! is, however, that—in
spite of the correctness of thermodynamic functions—
momentum distributions are correct only in the Boltzma
limit. Therefore, we have to search for better choices and
particular, for a correct representation of the Fermi distrib
tion ~21! for the momenta. This is the ultimate reason that
decided to model the quantum electron system by a qu
classical Hamiltonian with the following structure:

H5(
i 51

N pi
2

2m
1(

i , j
VPS r i j

r 0
,
pi j

p0
D1(

i , j
e2FS r i j

r 0
,
pi j

p0
D .

~27!
s
e

u-

r-
x-

s
-

of

c-
n
t

e

in
-
e
si-

We have here two kinds of electron-electron interaction:
so-called Pauli potentialVP and a Coulomb interaction
modified by a certain functionF(x,y). In order to derive
effective expressions of this type we follow the general id
to average the Hamilton operator with respect to test w
functions

H~q,p;\!5E dxc0* ~x!Ĥc0~x!. ~28!

The main candidates for the choice of test wave functions
symmetrized or anti-symmetrized combinations of minimu
uncertainty wave packets after Eq.~16!. Defining an effec-
tive Hamiltonian in this way was suggested by the so-cal
wave-packet dynamics, which has found recently quite s
cessful applications to plasmas@25,26,31,37#. Since mini-
mum wave packets contain at least one free parameter,
choice still gives us some freedom in the effective Ham
tonian that will be used below.

B. Pauli potential

Restricting the calculation described above to pair effe
and averaging over the two spin configurations of electr
we get

VP~p,r !5V0exp~2D2!
D2

12exp~2D2!
, ~29!

with

V05
\2

2m r0
2 . ~30!

This is a two-body interaction depending on the phase-sp
distance already introduced in the Introduction:

D25
p2

p0
2 1

r 2

r 0
2 . ~31!

In our simulations we used a simplified Pauli potenti
which is purely Gaussian as already suggested by Do
et al. @18#.

VP~p,r !5V0e2D2/2. ~32!

Figure 1 shows that the Dorso potential is in very go
agreement with the spin-averaged Pauli potential obtai
from Eq. ~28!.

In the Dorso potentialr 0 andV0 are considered free pa
rameters. In Sec. III D we will give an estimate for these fr
parameters with respect to the free Fermi gas. Conside
the two-particle relative motion, three different kinds of b
havior are observed~Fig. 2!: ~1! Free motion if the fermions
are far apart,~2! distorted motion~scattering!, and ~3! the
‘‘Pauli-forbidden’’ area. Of course, if the particles are in
tially put in this forbidden area they will remain there. B
there is no way for them to get into this area if they ha
been outside; i.e., the region in phase space forbidden by
Pauli principle is separated from the ‘‘normal’’ region by
separatrix.
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3502 56W. EBELING AND F. SCHAUTZ
C. Coulombic interaction

As already pointed out, we consider here a modified C
lomb interaction rather than the bare Coulomb poten
through which purely classical particles would interact. T
modification is described by the functionF @Eq. ~27!#. The
procedure of averaging with respect to Gaussian wave fu
tions described above yields

F~x,y!5r 0
21

erfS x

A2D
x

2
4p

y2

1

p3/2r 0
3 expH 2r 2

r 0
2 J , ~33!

wherex5r /r 0 and y5p/p0. In our simulations we used s
far only the first momentum-independent contribution, wh
was obtained already by Klakowet al. @25# using Gaussian
wave packets@Klakow-Toepffer-Reinhard~KTR! potential#:

F~x!5

erfS x

A2D
r 0x

. ~34!

FIG. 1. Comparison of several expressions for the Pauli po
tial: potential averaged over spins after Eq.~29! ~solid line!, poten-
tial after Eq.~32! ~bold line!; potential between particles with pa
allel ~upper dashed line! and antiparallel spins~lower dashed line!.

FIG. 2. Lines of constant energy for the two-particle relati
motion in the Pauli potential. Depending on the initial phase sp
distance of the particles three types of motion are observed:
orbits, distorted orbits~scattering!, and closed orbits of rather hig
energy, which therefore contribute little to thermodynamical av
ages at low temperatures.
-
l

s

c-

We mention also another expression, which was obtai
much earlier by Kelbg@32# using the Slater sum technique

F~x!5$12exp~x2!1Ap~x!@12erf~x!#%/~r 0x!. ~35!

In the KTR potentialr 0 is connected to the~constant! width
of the wave packets and has to be fitted for any particu
system. In the Kelbg potentialr 0 is equal to the thermal de
Broglie wave lengthl5L/A2p. Figure 3 shows the two
resulting modified Coulomb potentials. The width of th
wave packets was chosen in a way that the two potentials
equal atr 50. This leads to the conclusion that at least in t
limit of the nondegenerate electron gas,r 0 should be equal to
the thermal de Broglie wavelengthr 05l.

D. Fitting the free potential parameters

1. The minimal uncertainty condition

Following the approach of minimal uncertainty wav
packets we assume that the Heisenberg condition holds a
identity

~dpk!~dqk!5
1

2
\, k51,2,3. ~36!

This leads to the relationp0 by r 0 p05\. Further we assume
that the momentum uncertainty is given by that of the fr
Fermi gas

~dp!252mekin , ~37!

whereekin is the mean kinetic energy of the free Fermi ga
In this way we get

p0
25 2

3 m ekin . ~38!

This condition yields at high temperatures

p0
25mkT,

r 0
25\2/mkT5l2, ~39!

n-

e
ee

-

FIG. 3. Different modified Coulomb Interactions: Kelbg pote
tial ~solid line! and the wave-packet interaction~dashed line! at
short distances. The bare Coulomb potential is also shown~dot-
dashed line!.
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V05kT,

where l is the thermal de Broglie wavelength of relativ
motion. In the limit of low temperatures we get

p0
25 1

5 pF
2 ,

r 0
25 5

2 S 4

9p D 2/3

d2.0.679d2, ~40!

V05 2
5 eF .

2. Other estimates for the Pauli potential

At low temperatures Dorsoet al. gave an estimate forV0
based on the consideration off (p) at T50 @18#

V0
~1!5S 7

5D 5/22

5
eF.0.928eF . ~41!

In the calculation leading to Eq.~41! the Pauli potentialVP is
part of the Hamiltonian but is not considered to contribute
the internal energy. Changing this leads to another estim

V0
~2!5S 3

5D 5/2 S 7

5D 5/22

5
eF.0.258eF . ~42!

For r 0 we shall use the value from Eq.~40!. In order to
improve the expression forV0 we investigate the pair distri
bution functiong2(r ). In the case of high temperatures w
obtain with the Dorso potential

g2
kl~r !5

1

A2pmkT3E E dpW 1dpW 2exp@2bH2~rW1 ,rW2 ,pW 1 ,pW 2!#

~43!

g2
kl~r !512

V0

kT

1

A11mkT/2p0
23

expS 2
r 2

r 0
2D . ~44!

The comparison with Eq.~23! leads to

V0
~3!5

53/2

16
kT. ~45!

This equation may be written as

V05
53/2

24
ekin . ~46!

If we extend this relation to low temperatures it yields a th
low temperature estimate

V0
~3!5

53/2

24
ekin.0.279eF . ~47!

As we see, this is very similar to the estimate~42!. Combin-
ing the results given above we see that there exists a
peratureTd at which the high- and low-temperature para
eters are continuously connected. An estimate for
transition temperature isTd'1.32eF and the condition

nl351 ~48!
o
te

m-
-
e

is approximately fulfilled.
In conclusion of this discussion we may state that ther

no unique choice for the Pauli potential so far. We nee
compromise between the different constraints, which
quires density- and temperature-dependent parameters
far as we can see a good choice is

p0
25mQ, r 0

25
\2

4mQ
, V05Q, ~49!

where

Q5Q~T,n!5
2

3
ekin~T,n! ~50!

is the effective temperature of the free Fermi gas.

IV. MANY PARTICLE SIMULATIONS

A. Monte Carlo and molecular dynamics
with MC initial conditions

For equilibrium conditions, Monte Carlo calculations a
the easiest way to calculate physical properties, such as,
the average energy. In addition to this method we use h
also molecular dynamics, starting with initial conditions o
tained from previous Monte Carlo runs.

Usually molecular dynamics simulations addressing eq
librium properties consist of two parts: first the desired te
perature is adjusted using some thermostat, while in a sec
phase the energy is kept constant and measurements are
formed.

Since most known thermostats do not work in the case
momentum-dependent interactions, we replaced this
equilibration phase with a MC simulation using the alg
rithm of Metropoliset al. @38#. This algorithm is independen
of any particular form of the interaction. To perform th
molecular dynamics simulations we used a fourth or
Runge-Kutta integrator with step size control. The runs w
of length of order 50 times the inverse plasma frequency

B. Free Fermi gas

As a first step towards the simulation of the electron g
we considered the free Fermi gas. This model consists
classical particles only interacting through the Pauli poten
described above. The potential parameters were set acc
ing to Sec. III D. Periodic boundary conditions were use
We generated Monte Carlo runs of 23106 configurations
using 64 particles. Histograms for the momentum distrib
tion and the radial pair distribution are shown in Figs. 4–
here Figs. 4 and 5 correspond to the case of a degene
Fermi gas and Figs. 6 and 7 to a nondegenerate Fermi ga
comparison with the analytical formulas for the Fermi dist
bution @Eq. ~21!#, the Boltzmann distribution, and the radi
pair distribution of the degenerate Fermi gas@Eq. ~22!#, and
of the nondegenerate electron gas@Eq. ~23!# is made. We
mention that the relatively large fluctuations at small d
tances and/or momenta are due to statistical problems.
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3504 56W. EBELING AND F. SCHAUTZ
C. Electron gas

In order to simulate the ‘‘real’’ electron gas the Coulom
interaction is added to the free Fermi gas model. We used
modified Coulomb potential from Eq.~34!. The parameterr 0
was set to the value of the parameterr 0 occurring in the
Pauli potential. Since our modified Coulomb interaction d
fers from the bare Coulomb interaction only for short d
tances the Ewald sum technique for handling the long ra
part could be used. We carried out several Monte Carlo r
of 23106 for ensembles of 64 electrons embedded in a u
form positive background. The parameters were chose
such a way that degenerate as well as nondegenerate c
tions are covered. For some of the temperature-density p
used we performed calculations for several numbers of
ticles up to 512 and extrapolated to infinite particle numb
using a curve of the formE(N)5a1b/N1c/N2, whereE is
the total energy,N the number of particles, anda,b,c are
constants determined by a least-squares fit.

FIG. 4. Momentum distribution function of the free Fermi ga
Results of a simulation with 64 particles, densi
n56.731020 cm23, temperatureT5325 K50.1TF , potential pa-
rametersV050.26 eV,r 057.131028 cm ~histogram!, the Fermi-
Dirac distribution~solid line! and the Maxwell distribution~dashed
line!.

FIG. 5. Radial pair distribution function of the free Fermi ga
Results of a simulation with the same parameters as in Fig. 4~his-
togram! and the functiong2(r ) from Eq.~22! ~solid line!. L denotes
the size of the basic simulation cell.
he
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-
e
s

i-
in
di-
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r-
s

The results of our simulations are represented in Figs
and 9 and will be compared to the analytical theory in V.

V. COMPARISON WITH THE ANALYTICAL THEORY

A. Analytical formulas for the internal energy

Let us start with the assumption that the energy density
the electron gas can be split into a classical and a quan
mechanical part:

u5ucl1uqu, ~51!

where ucl is the energy density of the classical on
component plasma anduqu is by definition the difference
between the full and the classical energy density. Expl
calculations for the classical energy of the electron gas w
given first by Abe for the low density case. An overview
our analytical and numerical knowledge of the classical
ergy density as well as a new Pade´ interpolation formula that
connects the low density analytical formulas with the hi
density MC results was recently given by Kahlbaum@39#.

FIG. 6. Momentum distribution function of the free Fermi ga
Results of a simulation with 64 particles, densi
n56.731021 cm23, temperatureT53.53105 K523TF , potential
parametersV0521.14 eV,r 053.531029 cm ~histogram!, and the
Fermi-Dirac distribution~solid line!.

FIG. 7. Radial pair distribution function of the free Fermi ga
Results of a simulation with the same parameters as in Fig. 6~his-
togram! and the functiong2(r ) from Eq. ~23! ~solid line!.
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We will consider now the quantum mechanical corre
tions to the classical energy density and will give a new a
very simple derivation of the known result for the quantu
effects:

uqu5u2ucl . ~52!

According to this splitting we have to consider the differen
between the free energy density of a one-component q
tum plasma and that of a one-component classical plas
This expression is convergent and we may, at least in
case of lower density, neglect screening effects. In the
density limit we get

uqu52kTn2dB2~T!. ~53!

HeredB2(T) is the difference between the quantum and
classical second virial coefficients:

FIG. 8. Electron gas: internal energy per particle as a function
the Gell-Mann–Brueckner parameterr s : results of our simulations
for T5150 K ~near ground state! (d), T522 000 K (n), and
T547 000 K (*). Thelines show the Pade´ formula from@44# and
the open circles represent results of quantum Monte Carlo sim
tions @12#.

FIG. 9. Electron gas: exchange-correlation energy per particl
a function of the temperature forr s56.2. Simulations (d) com-
pared to the Pade´ formula from @44#. The inset shows the low
temperature part (T<Td , k Td51.6 eV, V051.2 eV, r 053.3
31028 cm).
-
d

n-
a.
e

w

e

dB2~T!5@B2~T!2 lim
\→0

B2~T!#. ~54!

For this difference function we will find an exact expressi
by using methods based on the quantum scattering th
@8#. First we transform the two-particle trace to a conto
integral over the resolvent. Then the quantum mechan
second virial expression is expressed by

B~T!5
p3/2l3

2i E
C
exp~2bz!F~z!dz, ~55!

F~z!5Tr $@Ĥ2z#2@Ĥ02z#%. ~56!

Here Ĥ is the two-particle Hamiltonian andĤ0 its kinetic
part. The full quantum contribution may be found by carr
ing out the trace using the known Jost functions of the C
lomb scattering problem. We get for the electron gas

dB2~T!52pl3$Q~2j!1DE~2j!2~j 3/6!@ ln~j!2De#%.

~57!

The virial functionsQ andE are given by the infinite serie
that was introduced and discussed first in 1968@7#. The ex-
plicit representations are

Q~x!5qnxn, E~x!5enxn, ~58!

q152
1

6
, q252

p1/2

8
, q35

1

12
2

1

6
ln 32

1

12
C,

~59!

C50.577216,. . . ,

qn5
p1/2z~n22!

2nG~11n/2!
if n>4. ~60!

Further

e05
p1/2

4
, e15

1

2
, e25

p1/2

4
ln 2, e35

p2

72
, ~61!

en5
p1/2@12222nz~n21!#

2nG~11n/2!
if n>4. ~62!

Similar results as reported here for the electron gas w
obtained recently for symmetrical quantum plasmas@40#.
The result for the quantum contribution given above is up
the orderO(n2), in full agreement with a result obtaine
recently by Alastuey and Perez@41#. The next order in the
density seems still to be subject to discussions@9,10,42#.
Here we shall use only the contribution of the orderO(n2)
with which all authors in the field now agree. In the oth
limit of the strongly degenerated electron gas the known a
lytical results for the internal energy per electron may
expressed in the form

u@ryd#5
2.21

r s
2 2

0.916

r s
10.0622lnr s20.096

10.018r slnr s1•••. ~63!

f
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3506 56W. EBELING AND F. SCHAUTZ
There exist several efforts to connect the known limit ca
by Pade´ approximations. A survey of several Pade´ approxi-
mations was recently given by Stolzmann and Blo¨cker @43#
We shall use here for comparison with the numerical res
a formula derived by Ebeling and Lehmann@44#.

B. Comparison of analytical and numerical results

In Fig. 8 the internal energy of the electron gas as a fu
tion of the Wigner-Seitz radiusr s , i.e., as a function of the
density, is shown for several temperatures. The lines re
sent the values obtained with the Pade´ formula from @44#.
For the densityn56.731021 cm23(r s56.2) Fig. 9 shows
the internal energy as a function of the temperature also c
pared to the Pade´ formula from@44#. We see that the overa
agreement between the analytical formulas and the sim
tions is rather good. The deviations are all within the er
bars of the simulations. Only at the lowest temperatures
systematic deviation observed~see inset in Fig. 9!, which
leads to a finite specific heat atT50. We may therefore
conclude that at low temperatures and high degeneracy~for
r s'6 corresponding toT,103 K) the quasiclassical mode
developed here breaks down. At conditions of weak or m
erate degeneracy, however, our model yields quite rea
able results.

VI. DISCUSSION

We developed in this work a simple quasiclassical mo
of the quantum electron gas based on a dynamics with
effective momentum-dependent Hamiltonian. The quantu
mechanical effects corresponding to the Pauli and
Heisenberg principles were modeled by constraints in
Hamiltonian. By using the concept of minimum uncertain
wave packets, momentum-dependent effective poten
were derived. The free potential parameters are fitted in s
a way that the most important properties of the free elect
gas, in particular the momentum-distribution and the p
distribution functions, were described reasonably at least
conditions where the degeneracy is not too strong.

We simulated a many-electron system with perio
boundary conditions by using Monte Carlo and molecu
dynamics calculations. Simulations were carried out for
sembles of 64–512 electrons. The mean energy was ca
lated for several temperatures between 100 and 47 000 K
s
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comparison with quantum Monte Carlo calculations of t
mean energy for low temperatures and with Pade´ approxima-
tions for several finite temperatures shows that at leas
thermodynamic equilibrium and moderate degeneracy
simple model yields reasonable results. The main advan
of molecular dynamics simulations in comparison to Mon
Carlo methods is that nonequilibrium properties are acc
sible. As a first example we have given in Fig. 10 t
velocity-velocity autocorrelations as a function of the rec
rocal plasma frequency. The curves show the typical beh
ior observed by Hansen, McDonald, and Pollock@11# for the
classical electron gas. A more detailed comparison
planned for a forthcoming paper.

We cannot expect, however, that the present mo
which was obtained by fitting the potential to equilibriu
properties, will describe all nonequilibrium properties in
quantitative way. Further improvements of the model mig
be unavoidable. We may hope, however, that at least n
equilibrium some realistic features are still reflected by
model.
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FIG. 10. Velocity autocorrelation functions from MD simula
tions for G50.15 ~dot-dashed line! and G51.0 ~dashed line!, and
G560.0 ~solid line!.
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